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PROPERTIES

Bruno Bertini,1 Christophe Moineau,1 Denis Sinou,1,* and 
Volkmar Vill2

1 Laboratoire de Synthèse Asymétrique, associé au CNRS, CPE Lyon,
Université Claude Bernard Lyon 1, 43, boulevard du 11 novembre

1918, 69622 Villeurbanne cédex, France
2 Institute of Organic Chemistry, University of Hamburg, Martin-

Luther-King-Platz 6, 20146 Hamburg, Germany

ABSTRACT

Nickel(0)-catalyzed reaction of pseudo-glucal 1 with Grignard reagents de-
rived from bromobenzene and 1-bromo-4-phenylbenzene gives the corre-
sponding �-C-aryl glycosides 2. Desilylation and hydrogenation of 2 leads to
saturated �-C-aryl glycosides 4, which can be used as chiral intermediates in
the synthesis of chiral liquid crystals. The combination with p-alkoxy-substi-
tuted benzaldehyde leads to compounds 5–6. Alternatively, reaction with p-
alkoxy-substituted phenylboronic acids gives the bora analogues 7–9. The
mesogenic properties of these compounds are strongly influenced by the
presence of an additional phenyl ring in the molecule.

INTRODUCTION

During the last decade, chirality has become one of the most important and
complex topics in liquid crystal research.1 Effectively, molecular asymmetry imparts
chirality to liquid crystalline phases and this has led to a variety of technical applica-
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ORDER                        REPRINTS

tions for chiral liquid crystals. Today, 16,000 among the 80,000 mesogenic known
compounds are chiral,2 with most of them having a chiral center in the flexible wing,
which induces the chirality by steric hindrance and disturbs the mesogenic order.

Vill and coworkers3 tried to separate chiral effects from mesogenic effects by
the isosteric replacement of methylen units with oxygen atoms in conformationally
rigid units. For this purpose they prepared new liquid crystals bearing a chiral tri-
oxadecalin core, and found that these compounds exhibited interesting chiral ef-
fects such as cholesteric helix inversion, double inversion of the helical twist sense,
and re-entrant TGBA phases. However, all substrates studied had the alkoxy-chain
directly bound to the phenyl ring situated on the pyranosyl moiety. We recently
published the synthesis of a homologous series of trioxadecalin derivatives bear-
ing terminal halogen and trifluoromethyl groups on the para position of the aro-
matic ring, and p-alkoxysubstituents on the para position of the phenyl ring directly
bound to the dioxolane moiety, and examined the influence of these substituents on
the mesogenic properties of these compounds.4 In the continuation of this work, we
present in this paper the influence of a biphenyl versus a phenyl group on the meso-
genic properties of the related compounds.

RESULTS AND DISCUSSION

The building block 4 for the synthesis of the new liquid crystals bearing a chi-
ral trioxadecalin system was prepared according to Scheme 1. p-tert-Butylphenyl
4,6-di-O-(tert-butyldimethylsilyl)-2,3-dideoxy-�-D-erythro-hex-2-enopyranoside
(1) was synthesized following the procedure previously described starting from
commercially available tri-O-acetyl-D-glucal.5 Reaction of the Grignard reagent,
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Scheme 1. 

Reagents and conditions: i: BrMgC6H4-p-R, NiCl2(dppe), THF; ii: Bu4NF, THF, 25˚C; iii:
H2,[Rh(COD)(dppb)]ClO4, EtOH
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prepared from bromobenzene or 1-bromo-4-phenylbenzene, with the unsaturated
carbohydrate 1 in the presence of a catalytic amount of NiCl2(dppe) [dppe � 1,2-
bis(diphenylphosphino)ethane] in tetrahydrofuran at �40 °C gave regio- and stere-
ospecifically the �-C-arylglycosides 2a and 2b in 83% [5] and 71% yields,
respectively.

The desilylation of compounds 2a and 2d was mediated by hydrated tetra-
butylammonium fluoride in tetrahydrofuran to give the unsaturated diols 3a and 3b
in 75% and 90% yields, respectively. These unsaturated diols 3a and 3b were hy-
drogenated at atmospheric pressure in the presence of [Rh(COD)(dppb)]ClO4

[COD: 1,5-cyclooctadiene; dppb : 1,4-bis(diphenylphosphino)butane] as the cata-
lyst to give the corresponding saturated diols 4a and 4b in 95% and 90% yields, re-
spectively.

The conversion of diols 4a and 4b to trioxadecalins 5a-d and 6a-d was car-
ried out with the corresponding dimethyl acetals of 4-alkoxybenzaldehyde in an
acid-catalyzed transacetalization reaction. The methanol formed was distilled off
to shift the equilibrium of the reaction (Scheme 2). The boronic acid derivatives
7a-d and 8a-d were readily obtained from diols 4a and 4b and the appropriate aryl-
boronic acid; the water formed was removed by azeotropic coevaporation with
toluene. All the products were recrystallized from ethanol and gave satisfactory el-
emental analysis.

The mesomorphic properties of compounds 5–8 are summarized in Table 1.
The melting points of the trioxadecalins 5a-d decrease with increasing chain
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Scheme 2. 
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length, and they exhibit only a cholesteric phase (N*). Also the pitch length de-
creases in compound 5a and 5d with increasing lateral chain length. The presence
of an additional phenyl ring in compounds 6a-d results in significantly higher
clearing temperatures than those of compounds 5a-d. Also, a broader enantiotropic
cholesteric phase is observed for 6a-d, and compound 6d showed an additional
smectic A phase (SA), a twist grain boundary phase (TGBA) and a blue phase (BP),
which is quite unusual in the trioxadecaline series.

The replacement of a tetrahedral carbon atom by a planar boron atom induces
quite different mesogenic properties in the trioxaborabicyclo compounds. No
mesogenic property is found for compound 7a, which could be due to a lack of
flexibility within the molecule. Compounds 7b-d show a smectic A phase, that is
monotropic for 8b. A cholesteric phase is observed only for compounds 7b and 7c;
this phase is observed to be monotropic for 8b. A cubic blue phase is observed for
compounds 7b and 7c, probably due to the high asymmetry of the mesophase.

Trioxaborabicyclo compounds 8a-d display higher clearing temperatures and
broader mesophases than the analogues 7a-d; a temperature decrease with increas-
ing chain length is observed. A monotropic cholesteric phase is observed for com-
pounds 8a and 8b, whereas compounds 8c and 8d exhibit an additionnal smectic A
phase. Compound 8d shows a cubic TGBA phase. Compounds 8a–8d also show a
blue phase.

CONCLUSIONS

Condensation of various aryl Grignard reagents derived from bromoben-
zene or 1-bromo-4-phenylbenzene with p-tert-butylphenyl 4,6-di-O-(tert-
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Table 1. Mesomorphism of Compounds 6–9a

Compound R n Transition Temperatures [�C]

5a H 1 C2 109.8 C1 126.0 N* 130.3 I
5b H 4 C2 112.0 C1 124.2 N* 128.3 I
5c H 6 C 113.5 N* 113.6 I
5d H 8 C2 105.0 C1 111.5 N* 111.6 I
6a C6H5 1 C 175.2 N* 236.0 I
6b C6H5 4 C 185.6 N* 222.0 I
6c C6H5 6 C1 174.8 N* 202.4 I
6d C6H5 8 C1 169.4 SA 175.3 TGBA 175.6 N* 201.2 BP
7a H 1 C 147.8 I
7b H 4 C 122.5 SA 89.8 N* 98.2 BPUV

7c H 6 C 95.7 SA 97.5 N* 103.7 BP
7d H 8 C 99.7 SA 103.6 I
8a C6H5 1 C 184.5 N* 232.7 BPUV

8b C6H5 4 C 179.6 N* 229.6 BPUV

8c C6H5 6 C2 150.0 C 156.5 SA 190.5 N* 226.8 BPUV

8d C6H5 8 C 141.5 SA 191.9 TGBA 191.4 N* 207.0 BPUV

a C: crystalline phase; SA: smectic A phase; N*: cholesteric phase; TGBA: twist grain boundary
phase; BP: blue phase; I: isotropic phase.
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butyldimethylsilyl)-2,3-dideoxy-�-D-erythro-hex-2-enopyranoside in the presence
of a nickel catalyst gives the corresponding �-C-aryl-�2-glycopyranosides, which
are the key intermediates for the synthesis of chiral trioxa- and trioxaboradecalin
derivatives. These compounds show mesogenic properties that are strongly influ-
enced by the presence of an additional phenyl ring in the molecule. Higher clearing
temperatures are observed in this case, as well as broader enantiotropic cholesteric
phases, smectic A phases, TGBA phases and blue-phases.

EXPERIMENTAL

General Methods. All reactions were monitored by TLC (TLC plates
GF254 Merck); detection was effected by UV absorbance and spraying with a so-
lution of ethanol-sulfuric acid (9:1), followed by heating. Reactions involving
organometallic catalysis were carried out in a Schlenk tube under an inert atmo-
sphere. Tetrahydrofuran was distilled from sodium/benzophenone. Column chro-
matography was performed on silica gel 60 (230–240 mesh, Merck). Optical rota-
tions were recorded using a Perkin-Elmer 241 polarimeter. The NMR spectra (1H:
200, 300, or 400 MHz, 13C: 50, 75, or 100 MHz) were recorded on a Bruker AMX-
200, AMX-300, or AMX-400 spectrometer with SiMe4 as internal standard. An
Olympus BH optical polarizing microscope equipped with a Mettler FP 82 hot
stage and a Mettler FP 80 central processor was used to identify thermal transitions
and characterize anisotropic textures. For further verification of the textures, a con-
tact preparation with N4 (4-butyl-4�-methoxyazoxybenzene, K 16 N 76 I) was car-
ried out. Analysis by DSC was carried out on a Perkin-Elmer DSC7 instrument us-
ing heating and cooling rates of 5 K min�1. The following compounds were
prepared according to literature procedure: p-tert-butylphenyl 4,6-di-O-(tert-
butyldimethylsilyl)-2,3-dideoxy-�-D-erythro-hex-2-enopyranoside (1),5 [4,6-di-
O-(tert-butyldimethylsilyl)-2,3-dideoxy-�-D-erythro-hex-2-enopyranosyl]ben-
zene (2a),5 p-alkoxybenzaldehyde dimethylacetals,6 phenyl boronic acids,7

NiCl2(dppe).8

Standard Procedure for Nickel-Catalyzed Coupling Reaction. To a so-
lution of the unsaturated carbohydrate 1 (223 mg, 0.44 mmol) and NiCl2(dppe) (23
mg, 0.044 mmol) in 2 mL of THF was slowly added at �40 °C a solution of a Grig-
nard reagent prepared from magnesium (64 mg, 2.6 mmol) and the appropriate bro-
mide (2.18 mmol) in 5 mL of THF. The reaction was followed by TLC. After 24
h, diethyl ether (50 mL) was added, and the ethereal solution was washed with wa-
ter (2 	 10 mL), and dried. After evaporation of the solvent under reduced pres-
sure, the residue was purified by column chromatography using the indicated sol-
vents as the eluent to give the corresponding C-glycoside 2.

4-[4,6-Di-O-(tert-butyldimethylsilyl)-2,3-dideoxy-�-D-erythro-hex-2-
enopyranosyl]biphenyl (2b) . Yield 71%; Rƒ 0.27 (petroleum ether/dichloro-
methane 4/1); [�]D

20 
126.8 (c 1.1, CHCl3); 1H NMR (200 MHz, CDCl3) � 0.01
(s, 3H, SiCH3), 0.05 (s, 3H, SiCH3), 0.14 (s, 3H, SiCH3), 0.15 (s, 3H, SiCH3), 0.91
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(s, 9H, SiCMe3), 0.94 (s, 9H, SiCMe3),3.52 (ddd, J � 8.4, 4.5, 2.1 Hz, 1H, H-5),
3.85 (dd, J � 11.4, 4.5 Hz, 1H, H-6), 3.94 (dd, J � 11.4, 2.1 Hz, 1H, H-6), 4.39
(dd, J � 8.4, 2.9 Hz, 1H, H-4), 5.13 (d, J � 2.9 Hz, 1H, H-1), 5.44 (d, J � 10.2 Hz,
1H, H-2), 5.54 (d, J � 10.2 Hz, 1H, H-3), 7.33–7.48 (m, 5H, Harom), 7.54–7.62 (m,
4H, Harom); 13C (50 MHz, CDCl3) � �5.1, �5.0, �4.2, 18.1, 18.5, 25.9, 26.0, 33.7,
63.0, 63.6, 77.1, 80.7, 127.1, 127.2, 127.3, 127.4, 128.8, 130.0, 130.5, 140.4,
140.6, 141.1.

Standard Procedure for Preparation of Unsaturated C-Arylglycosides
3. The unsaturated C-aryl glycoside 2 (0.43 mmol) was stirred in THF (5 mL)
at room temperature in the presence of tetrabutylammonium chloride trihydrate
(139 mg, 0.44 mmol). After 2 h, the solvent was evaporated, and the crude
residue treated with CH2Cl2 (25 mL) and H2O (5 mL). Evaporation of the or-
ganic solvent gave quantitatively the crude diol 3 which was purified by flash-
chromatography on silica.

(2,3-Dideoxy-�-D-erythro-hex-2-enopyranosyl)benzene (3a). Yield
75%; Rƒ 0.40 (petroleum ether/ethyl acetate 1/4); [�]D

20 
192.1 (c 0.8, CHCl3);
1H NMR (200 MHz, CDCl3) � 1.94 (s, 2H, OH), 3.59 (ddd, J � 8.7, 5.2, 4.1 Hz,
1H, H-5), 3.86 (dd, J � 11.6, 5.2 Hz, 1H, H-6), 3.96 (dd, J � 11.6, 4.1 Hz, 1H, H-
6), 4.35 (ddd, J � 8.7, 1.6, 1.2 Hz, 1H, H-4), 5.18 (bs, 1H, H-1), 5.84 (d, J � 10.4
Hz, 1H, H-2), 5.92 (d, J � 10.4 Hz, 1H, H-3), 7.34 (bs, 5H, Harom); 13C (50 MHz,
CDCl3) � 63.3, 64.3, 77.5, 79.5, 127.4, 128.4, 128.7, 129.0, 131.1.

Anal. Calcd for C12H14O3 (206.24) : C, 69.89; H, 6.84%. Found: C, 69.81; H,
6.77%.

4-(2,3-Dideoxy-�-D-erythro-hex-2-enopyranosyl)biphenyl (3b). Yield
90%; Rƒ 0.37 (petroleum ether/ethyl acetate 1/4); [�]D

20 
193.7 (c 1.0, CHCl3);
1H NMR (200 MHz, CDCl3) � 1.80 (bs, 2H, OH), 3.61 (ddd, J � 8.7, 5.3, 4.1 Hz,
1H, H-5), 3.87 (dd, J � 11.6, 5.3 Hz, 1H, H-6), 3.97 (dd, J � 11.6, 4.1 Hz, 1H, H-
6), 4.37 (ddd, J � 8.7, 3.0, 1.4 Hz, 1H, H-4), 5.22 (bs, 1H, H-1), 5.88 (d, J � 10.3
Hz, 1H, H-2), 5.95 (dd, J � 10.3, 1.4 Hz, 1H, H-3), 7.31–7.48 (m, 5H, Harom),
7.55–7.60 (m, 4H, Harom); 13C (50 MHz, CDCl3) � 63.4, 64.5, 77.2, 79.5, 127.2,
127.5, 127.8,128.8, 129.1, 131.1, 139.3, 140.8, 141.4,161.9.

Anal. Calcd for C18H18O3 (282.34): C, 76.57; H, 6.43%. Found: C, 75.81; H,
6.48%.

Standard Procedure for Preparation of Saturated C-Arylglycosides 4.
The unsaturated diol 3 was dissolved in ethanol (5 mL), and treated by molecular
hydrogen at atmospheric pressure and room temperature in the presence of
[Rh(COD)(dppb)]ClO4)] (0.02 mmol). After 24 h, filtration of the solution and
evaporation of the solvent gave a residue, which was purified by column chro-
matography to afford the saturated C-aryl glycoside 4.

(2,3-Dideoxy-�-D-erythro-hexanopyranosyl)benzene (4a). Yield 95%;
Rƒ 0.38 (petroleum ether/ethyl acetate 1/4); [�]D

20 
62.5 (c 1.5, CHCl3); 1H NMR
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(200 MHz, CDCl3) � 1.63–1.75 (m, 4H, OH, H-3ax, H-2ax), 1.98 (m, 1H, H-2eq),
2.18 (m, 1H, H-3eq), 3.42 (ddd, J � 9.2, 5.0, 4.3 Hz, 1H, H-5), 3.71 (ddd, J � 10.2,
9.2, 4.9 Hz, 1H, H-4), 3.85 (dd, J � 11.6, 5.0 Hz, 1H, H-6), 3.95 (dd, J � 11.6, 4.3
Hz, 1H, H-6), 4.43 (dd, J � 10.6, 2.2 Hz, 1H, H-1), 7.28–7.35 (m, 5H, Harom); 13C
(50 MHz, CDCl3) � 32.9, 33.0, 63.5, 67.3, 79.5, 81.9, 126.0, 127.7, 128.4.

Anal. Calcd for C12H16O3(208.26) : C, 69.21; H, 7.74%. Found: C, 68.95; H,
7.80%.

4-(2,3-Dideoxy-�-D-erythro-hexanopyranosyl)biphenyl (4b). Yield
90%; Rƒ 0.34 (petroleum ether/ethyl acetate 1/4); [�]D

20 
76.8 (c 0.8, CHCl3);
1H NMR (200 MHz, CDCl3) � 1.57–1.88 (m, 4H, OH, H-3ax, H-2ax), 2.02 (m,
1H, H-2eq), 2.27 (m, 1H, H-3eq), 3.45 (ddd, J � 9.2, 5.0, 4.5 Hz, 1H, H-5), 3.75
(ddd, J � 10.2, 9.2, 4.8 Hz, 1H, H-4), 3.87 (dd, J � 11.5, 5.0 Hz, 1H, H-6), 3.97
(dd, J � 11.5, 4.5 Hz, 1H, H-6), 4.47 (dd, J � 10.5, 2.2 Hz, 1H, H-1), 7.34–7.48
(m, 5H, Harom), 7.55–7.60 (m, 4H, Harom); 13C (50 MHz, CDCl3) � 34.4, 34.8,
64.0, 67.6, 80.7, 84.8, 127.9, 128.0, 128.2, 128.5, 130.1, 141.8, 142.5, 143.3.

Anal. Calcd for C18H20O3 (284.36): C, 76.03; H, 7.09%. Found: C, 75.75; H,
7.13%.

Standard Procedure for Preparation of Compounds 5–6. A flask con-
taining 0.16 mmol of the diol 4, 0.22 mmol of 4-alkyloxybenzaldehyde dimethyl
acetal, and 5.0 mg of p-toluenesulfonic acid monohydrate, dissolved in 5 mL of
N,N-dimethylformamide, was connected to a rotatory evaporator. The mixture was
heated at reduced pressure (30 mbar) in a water-bath at 60 °C, until TLC revealed
complete reaction. The solvent was removed in vacuo (10 hPA) and 75 °C. The
solid residue was washed with a saturated solution of sodium hydrogen carbonate,
filtered, washed with water and cold ethanol, and then recrystallized from ethanol
to afford compounds 5–6.

(1S,3R,6R,8R)-8-Phenyl-3-(4�-methyloxyphenyl)-2,4,7-trioxabicy-
clo[4.4.0]decane (5a). Yield 28%; mp 126.0 °C; [�]D

20 
28.0 (c 0.5, CHCl3);
1H NMR (400 MHz, CDCl3) � 1.50–1.71 (m, 3H, 2 	 H-9, H-10), 1.98 (m, 1H, H-
10), 3.26 (s, 3H, OCH3), 3.36 (m, 1H, H-1), 3.48 (ddd, J � 10.2, 9.6, 4.6 Hz, 1H,
H-6), 3.69 (dd, J � 10.2, 10.2 Hz, 1H, H-5), 4.16 (bd, J � 10.7 Hz, 1H, H-8), 4.31
(dd, J � 10.2, 4.6 Hz, 1H, H-5), 5.50 (s, 1H, H-3), 6.83 (d, J � 8.1 Hz, 2H, Harom),
7.10–7.29 (m, 5H, Harom), 7.64 (d, J � 8.1 Hz, 2H, Harom); 13C (100 MHz, CDCl3)
� 30.0, 34.2, 55.1, 70.1, 74.8, 78.7, 80.0, 102.4, 114.1, 126.4, 128.0, 128.5, 128.7,
128.8, 131.8, 138.2, 141.8, 160.8.

Anal. Calcd for C20H22O4 (326.39): C, 73.60; H, 6.79%. Found: C, 73.35; H,
6.48%.

(1S,3R,6R,8R)-8-Phenyl-3-(4�-butyloxyphenyl)-2,4,7-trioxabicy-
clo[4.4.0]decane (5b). Yield 44%; mp 124.2 °C; [�]D

20 
25.7 (c 0.3, CHCl3);
1H NMR (400 MHz, CDCl3) � 0.82 (t, J � 7.6 Hz, 3H, CH3), 1.32 (m, 2H, CH2),
1.50–1.72 (m, 5H, CH2, H-9, 2 	 H-10), 1.95 (m, 1H, H-9), 3.36 (ddd, J � 10.7,
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9.7, 4.6 Hz, 1H, H-1), 3.49 (ddd, J � 10.2, 9.7, 4.6 Hz, 1H, H-6), 3.58 (t, J � 6.6
Hz, 2H, OCH2), 3.71 (dd, J � 10.2, 10.2 Hz, 1H, H-5), 4.16 (bd, J � 10.2 Hz, 1H,
H-8), 4.34 (dd, J � 10.2, 4.6 Hz, 1H, H-5), 5.51 (s, 1H, H-3), 6.88 (d, J � 8.1 Hz,
2H, Harom), 7.10–7.21 (m, 3H, Harom), 7.28 (d, J � 8.1 Hz, 2H, Harom), 7.69 (d, J
� 8.1 Hz, 2H, Harom); 13C (100 MHz, CDCl3) � 14.3, 19.9, 30.0, 32.0, 34.2, 67.9,
70.1, 74.8, 78.7, 80.0, 102.4, 114.7, 126.5, 128.1, 128.5, 128.7, 128.8, 131.6,
138.2, 143.1, 160.5.

Anal. Calcd for C23H28O4 (368.48): C, 74.97; H, 7.66%. Found: C, 75.04; H,
7.53%.

(1S,3R,6R,8R)-8-Phenyl-3-(4�-hexyloxyphenyl)-2,4,7-trioxabicy-
clo[4.4.0]decane (5c). Yield 56%; mp 113.5 °C; [�]D

20 
24.5 (c 0.3, CHCl3);
1H NMR (400 MHz, CDCl3) � 0.84 (t, J � 6.6 Hz, 3H, CH3), 1.12–1.32 (m, 6H,
CH2), 1.48–1.69 (m, 5H, CH2, H-9, 2 	 H-10), 1.94 (m, 1H, H-9), 3.35 (m, 1H,
H-1), 3.48 (ddd, J � 10.2, 9.2, 4.6 Hz, 1H, H-6), 3.59 (t, J � 6.1 Hz, 2H, OCH2),
3.69 (dd, J � 10.2, 10.2 Hz, 1H, H-5), 4.15 (bd, J � 10.7 Hz, 1H, H-8), 4.32
(dd, J � 10.2, 4.6 Hz, 1H, H-5), 5.50 (s, 1H, H-3), 6.89 (d, J � 7.6 Hz, 2H,
Harom), 7.08–7.28 (m, 5H, Harom), 7.64 (d, J � 7.6 Hz, 2H, Harom); 13C (100
MHz, CDCl3) � 14.6, 23.4, 26.4, 29.9, 32.3, 34.2, 68.3, 70.1, 74.8, 78.7, 80.0,
102.5, 114.7, 126.5, 128.0, 128.5, 128.8, 131.6, 138.2, 143.1, 160.5.

Anal. Calcd for C25H32O4 (396.53): C, 75.73; H, 8.13%. Found: C, 75.51; H,
8.09%.

(1S,3R,6R,8R)-8-Phenyl-3-(4�-octyloxyphenyl)-2,4,7-trioxabicy-
clo[4.4.0]decane (5d). Yield 39%; mp 111.5 °C; [�]D

20 
23.4 (c 0.3, CHCl3);
1H NMR (400 MHz, CDCl3) � 0.90 (t, J � 6.1 Hz, 3H, CH3), 1.162–1.38 (m,
12H, CH2), 1.48–1.71 (m, 5H, CH2, H-9, 2 	 H-10), 1.94 (m, 1H, H-9), 3.35 (m,
1H, H-1), 3.46 (ddd, J � 10.2, 9.2, 4.6 Hz, 1H, H-6), 3.61 (t, J � 6.1 Hz, 2H,
OCH2), 3.69 (dd, J � 10.2, 10.2 Hz, 1H, H-5), 4.14 (bd, J � 10.2 Hz, 1H, H-8),
4.31 (dd, J � 10.2, 4.6 Hz, 1H, H-5), 5.50 (s, 1H, H-3), 6.91 (d, J � 7.6 Hz, 2H,
Harom), 7.08–7.28 (m, 5H, Harom), 7.66 (d, J � 7.6 Hz, 2H, Harom); 13C (100MHz,
CDCl3) � 14.7, 23.4, 26.8, 30.0, 30.6, 34.2, 68.3, 70.1, 74.8, 78.7, 80.0, 102.5,
114.7, 126.5, 128.0, 128.5, 128.8, 131.6, 138.2, 143.1, 160.5.

Anal. Calcd for C27H36O4 (424.58): C, 76.38; H, 8.55%. Found: C, 75.87; H,
8.60%.

(1S,3R,6R,8R)-8-Biphenyl-3-(4�-methyloxyphenyl)-2,4,7-trioxabicy-
clo[4.4.0]decane (6a). Yield 32%; mp 175.2 °C; [�]D

20 
34.2 (c 0.4, CHCl3);
1H NMR (400 MHz, CDCl3) � 1.50–1.71 (m, 3H, 2 	 H-9, H-10), 1.98 (m, 1H, H-
10), 3.26 (s, 3H, OCH3), 3.36 (m, 1H, H-1), 3.48 (ddd, J � 10.2, 9.2, 4.6 Hz, 1H,
H-6), 3.69 (dd, J � 10.2, 10.2 Hz, 1H, H-5), 4.16 (bd, J � 10.2 Hz, 1H, H-8), 4.31
(dd, J � 10.2, 4.6 Hz, 1H, H-5), 5.50 (s, 1H, H-3), 6.83 (d, J � 8.1 Hz, 2H, Harom),
7.10–7.29 (m, 9H, Harom), 7.64 (d, J � 8.1 Hz, 2H, Harom); 13C (100 MHz, CDCl3)
� 30.0, 34.2, 55.1, 70.2, 74.9, 78.8, 79.8, 102.5, 114.2, 116.1, 127.0, 127.7, 127.9,
128.5, 128.7, 129.4, 131.8, 138.2, 141.8, 160.8.
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Anal. Calcd for C26H26O4 (402.49): C, 77.59; H, 6.51%. Found: C, 77.23; H,
6.34%.

(1S,3R,6R,8R)-8-Biphenyl-3-(4�-butyloxyphenyl)-2,4,7-trioxabicy-
clo[4.4.0]decane (6b). Yield 46%; mp 186.6 °C; [�]D

20 
29.4 (c 0.1, CHCl3);
1H NMR (400 MHz, CDCl3) � 0.78 (t, J � 7.6 Hz, 3H, CH3), 1.26 (m, 2H, CH2),
1.45–1.72 (m, 5H, CH2, H-9, 2 	 H-10), 1.98 (m, 1H, H-9), 3.36 (ddd, J � 10.7,
9.7, 4.6 Hz, 1H, H-1), 3.45–3.59 (m, 3H, H-6, OCH2), 3.71 (dd, J � 10.2, 10.2
Hz, 1H, H-5), 4.19 (bd, J � 9.2 Hz, 1H, H-8), 4.32 (dd, J � 10.2, 4.6 Hz, 1H,
H-5), 5.51 (s, 1H, H-3), 6.88 (d, J � 7.6 Hz, 2H, Harom), 7.08–7.21 (m, 3H,
Harom), 7.28 (m, 2H, Harom), 7.42–7.49 (m, 4H, Harom), 7.69 (d, J � 7.6 Hz, 2H,
Harom); 13C (100 MHz, CDCl3) � 14.3, 19.9, 30.0, 32.0, 34.2, 67.9, 70.1, 74.8,
78.7, 80.0, 102.5, 114.7, 127.0, 127.7, 127.9, 128.5, 129.5, 131.6, 138.2, 143.1,
160.5.

Anal. Calcd for C29H32O4 (444.57): C, 78.35; H, 7.26%. Found: C, 78.16; H,
7.12%.

(1S,3R,6R,8R)-8-Biphenyl-3-(4�-hexyloxyphenyl)-2,4,7-trioxabicy-
clo[4.4.0]decane (6c). Yield 60%; mp 174.8 °C; [�]D

20 
27.5 (c 0.5, CHCl3);
1H NMR (400 MHz, CDCl3) � 0.84 (t, J � 6.6 Hz, 3H, CH3), 1.19–1.32 (m, 6H,
CH2), 1.43–1.70 (m, 5H, CH2, H-9, 2 	 H-10), 1.98 (m, 1H, H-9), 3.37 (m, 1H,
H-1), 3.48 (ddd, J � 10.2, 9.2, 4.6 Hz, 1H, H-6), 3.60 (t, J � 6.1 Hz, 2H, OCH2),
3.70 (dd, J � 10.2, 10.2 Hz, 1H, H-5), 4.20 (bd, J � 9.7 Hz, 1H, H-8), 4.32 (dd,
J � 10.2, 4.6 Hz, 1H, H-5), 5.50 (s, 1H, H-3), 6.89 (d, J � 8.1 Hz, 2H, Harom),
7.11–7.20 (m, 3H, Harom), 7.28 (d, J � 7.1 Hz, 2H, Harom), 7.43–7.50 (m, 4H,
Harom), 7.66 (d, J � 7.6 Hz, 2H, Harom); 13C (100MHz, CDCl3) � 14.6, 23.3, 26.4,
29.9, 30.0, 32.3, 34.2, 68.3, 70.1, 74.9, 78.8, 79.8, 102.5, 114.7, 126.9, 127.7,
127.8, 128.5, 128.7, 129.5, 131.6, 141.2, 142.1, 160.5.

Anal. Calcd for C31H36O4 (472.63): C, 78.78; H, 7.68%. Found: C, 78.18; H,
7.53%.

(1S,3R,6R,8R)-8-Biphenyl-3-(4�-octyloxyphenyl)-2,4,7-trioxabicy-
clo[4.4.0]decane (6d). Yield 82%; mp 169.4 °C; [�]D

20 
27.0 (c 0.3, CHCl3);
1H NMR (400 MHz, CDCl3) � 0.90 (t, J � 6.6 Hz, 3H, CH3), 1.14–1.74 (m,
12H, CH2), 1.52–1.74 (m, 5H, CH2, H-9, 2 	 H-10), 1.98 (m, 1H, H-9), 3.38 (m,
1H, H-1), 3.51 (ddd, J � 10.2, 9.2, 4.6 Hz, 1H, H-6), 3.60 (t, J � 6.6 Hz, 2H,
OCH2), 3.71 (dd, J � 10.2, 10.2 Hz, 1H, H-5), 4.21 (bd, J � 10.7 Hz, 1H, H-8),
4.34 (dd, J � 10.2, 4.6 Hz, 1H, H-5), 5.52 (s, 1H, H-3), 6.91 (d, J � 8.6 Hz, 2H,
Harom), 7.19–7.23 (m, 4H, Harom), 7.30 (d, J � 7.6 Hz, 2H, Harom), 7.44–7.50 (m,
3H, Harom), 7.69 (d, J � 8.6 Hz, 2H, Harom); 13C (100 MHz, CDCl3) � 14.7, 23.5,
26.8, 30.0, 30.1, 32.6, 34.2, 68.3, 70.2, 74.9, 78.8, 79.8, 102.5, 114.7, 127.0,
127.7, 128.5, 128.7, 129.5, 131.6, 141.3, 142.1, 160.5.

Anal. Calcd for C33H40O4 (500.68): C, 79.16; H, 8.05%. Found: C, 79.24; H,
8.04%.
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Standard Procedure for Preparation of Compounds 7–8. A solution of
0.14 mmol of compound 4 and 0.17 mmol of 4-alkyloxyphenyl boronic acid in 5
mL toluene was stirred at 45 °C under 60 mbar. The water produced in the reaction
was co-evaporated three times with 5 mL of toluene. The remaining crystalline
solid was recrystallized from ethanol to give compounds 7–8.

(1S,6R,8R)-8-Phenyl-3-(4�-methyloxyphenyl)-2,4,7-trioxa-3-borabicy-
clo[4.4.0]decane (7a). Yield 80%; mp 147.8 °C; [�]D

20 
38.9 (c 0.1, CHCl3);
1H NMR (300 MHz, CDCl3) � 1.72–1.92 (m, 2H, H-9), 2.08 (m, 1H, H-10), 2.39
(dddd, J � 11.4, 4.4, 3.7, 3.3 Hz, 1H, H-10), 3.64 (ddd, J � 10.3, 9.2, 5.2 Hz, 1H,
H-6), 3.82 (s, 3H, OCH3), 3.89 (ddd, J � 10.7, 9.2, 4.4 Hz, 1H, H-1), 3.97 (dd, J
� 10.3, 10.3 Hz, 1H, H-5), 4.27 (dd, J � 10.3, 5.2 Hz, 1H, H-5), 4.55 (dd, J � 11.0,
2.2 Hz, 1H, H-8), 6.89 (d, J � 8.8 Hz, 2H, Harom), 7.32 (m, 1H, Harom), 7.36 (m,
4H, Harom), 7.76 (d, J � 8.8 Hz, 2H, Harom); 13C (75 MHz, CDCl3) � 31.2, 33.1,
55.1, 64.9, 71.6, 76.1, 80.1, 113.3, 126.0, 127.9, 128.5, 135.9, 141.6, 162.0.

Anal. Calcd for C19H21O4B (324.19): C, 70.12; H, 6.82%. Found: C, 70.10;
H, 6.42%.

(1S,6R,8R)-8-Phenyl-3-(4�-butyloxyphenyl)-2,4,7-trioxa-3-borabicy-
clo[4.4.0]decane (7b). Yield 63%; mp 122.5 °C; [�]D

20 
23.7 (c 0.1, CHCl3);
1H NMR (300 MHz, CDCl3) � 0.98 (t, J � 7.5 Hz, 3H, CH3), 1.23 (m, 2H, CH2),
1.68–1.92 (m, 4H, H-9, CH2), 2.08 (m, 1H, H-10), 2.37 (m, 1H, H-10), 3.67 (ddd,
J � 10.3, 9.9, 5.1 Hz, 1H, H-6), 3.85–4.05 (m, 4H, H-1, H-5, OCH2), 4.26 (dd, J
� 10.3, 5.1 Hz, 1H, H-5), 4.55 (bd, J � 9.9 Hz, 1H, H-8), 6.88 (d, J � 7.7 Hz, 2H,
Harom), 7.30 (m, 5H, Harom), 7.74 (d, J � 7.7 Hz, 2H, Harom); 13C (75 MHz, CDCl3)
� 13.9, 19.3, 31.1, 31.3, 33.1, 64.8, 67.5, 71.5, 76.0, 80.1, 113.8, 125.9, 127.8,
127.9, 128.4, 135.7, 141.5, 161.5.

Anal. Calcd for C22H27O4B (366.27): C, 72.09; H, 7.73%. Found: C, 72.92;
H, 7.37%.

(1S,6R,8R)-8-Phenyl-3-(4�-hexyloxyphenyl)-2,4,7-trioxa-3-borabicy-
clo[4.4.0]decane (7c). Yield 70%; mp 95.7 °C; [�]D

20 
24.5 (c 0.3, CHCl3); 1H
NMR (300 MHz, CDCl3) � 0.90 (t, J � 6.6 Hz, 3H, CH3), 1.30–1.39 (m, 4H, CH2),
1.46 (m, 2H, CH2), 1.72–1.92 (m, 4H, H-9, CH2), 2.07 (m, 1H, H-10), 2.37 (m, 1H,
H-10), 3.64 (ddd, J � 9.9, 9.6, 5.5 Hz, 1H, H-6), 3.84–4.02 (m, 4H, H-1, H-5,
OCH2), 4.26 (dd, J � 10.3, 5.5 Hz, 1H, H-5), 4.54 (dd, J � 11.0, 2.2 Hz, 1H, H-
8), 6.88 (d, J � 8.5 Hz, 2H, Harom), 7.30 (m, 1H, Harom), 7.38 (m, 4H, Harom), 7.74
(d, J � 8.5 Hz, 2H, Harom); 13C (75 MHz, CDCl3) � 14.1, 22.7, 25.8, 29.3, 31.2,
31.7, 33.0, 64.9, 67.8, 71.6, 76.1, 80.1, 113.8, 125.9, 127.8, 127.9, 128.4, 135.7,
141.5, 161.5.

Anal. Calcd for C24H31O4B (394.32): C, 73.05; H, 7.92%. Found: C, 72.55;
H, 7.92%.

(1S,6R,8R)-8-Phenyl-3-(4�-octyloxyphenyl)-2,4,7-trioxa-3-borabicy-
clo[4.4.0]decane (7d). Yield 68%; mp 99.7 °C; [�]D

20 
17.0 (c 0.4, CHCl3);
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1H NMR (300 MHz, CDCl3) � 0.89 (t, J � 7.0 Hz, 3H, CH3), 1.23–1.36 (m, 8H,
CH2), 1.46 (m, 2H, CH2), 1.72–1.92 (m, 4H, H-9, CH2), 2.08 (m, 1H, H-10), 2.39
(m, 1H, H-10), 3.63 (ddd, J � 10.3, 9.6, 5.1 Hz, 1H, H-6), 3.84–4.02 (m, 4H, H-
1, H-5, OCH2), 4.26 (dd, J � 10.3, 5.1 Hz, 1H, H-5), 4.53 (bd, J � 11.0 Hz, 1H,
H-8), 6.88 (d, J � 8.5 Hz, 2H, Harom), 7.30 (m, 1H, Harom), 7.34 (m, 4H, Harom),
7.74 (d, J � 8.5 Hz, 2H, Harom); 13C (75 MHz, CDCl3) � 14.1, 22.7, 26.1, 29.2,
29.3, 29.4, 31.1, 31.8, 33.1, 64.8, 67.8, 71.5, 76.0, 80.1, 113.8, 125.9, 127.8,
128.5, 135.8, 141.5, 161.5.

Anal. Calcd for C26H35O4B (422.38): C, 73.89; H, 8.35%. Found: C, 73.59;
H, 8.35%.

(1S,6R,8R)-8-Biphenyl-3-(4�-methyloxyphenyl)-2,4,7-trioxa-3-borabicy-
clo[4.4.0]decane (8a). Yield 80%; mp 184.5 °C; [�]D

20 
30.2 (c 0.5, CHCl3);
1H NMR (300 MHz, CDCl3) � 1.72–1.92 (m, 2H, H-9), 2.08 (m, 1H, H-10), 2.41
(m, 1H, H-10), 3.66 (ddd, J � 10.3, 9.2, 5.2 Hz, 1H, H-6), 3.83 (s, 3H, OCH3),
3.91 (ddd, J � 10.7, 9.2, 4.4 Hz, 1H, H-1), 4.00 (dd, J � 10.3, 10.3 Hz, 1H, H-
5), 4.28 (dd, J � 10.3, 5.2 Hz, 1H, H-5), 4.60 (dd, J � 11.0, 2.2 Hz, 1H, H-8),
6.90 (d, J � 8.5 Hz, 2H, Harom), 7.35 (m, 1H, Harom), 7.43 (m, 4H, Harom), 7.59
(m, 4H, Harom), 7.77 (d, J � 8.5 Hz, 2H, Harom); 13C (75 MHz, CDCl3) � 31.2,
33.0, 55.1, 64.9, 71.6, 76.1, 79.9, 113.3, 126.5, 127.2, 127.3, 127.4, 128.9, 135.9,
140.6, 140.9, 141.0, 162.0.

Anal. Calcd for C25H25O4B (400.29): C, 74.97; H, 6.30%. Found: C, 74.58;
H, 6.36%.

(1S,6R,8R)-8-Biphenyl-3-(4�-butyloxyphenyl)-2,4,7-trioxa-3-borabicy-
clo[4.4.0]decane (8b). Yield 69%; mp 179.6 °C; [�]D

20 
28.0 (c 0.4, CHCl3);
1H NMR (300 MHz, CDCl3) � 0.98 (t, J � 7.4 Hz, 3H, CH3), 1.44–1.54 (m, 4H,
CH2), 1.73–1.95 (m, 4H, H-9, CH2), 2.12 (m, 1H, H-10), 2.42 (m, 1H, H-10), 3.67
(ddd, J � 10.3, 9.9, 5.1 Hz, 1H, H-6), 3.88–4.04 (m, 4H, H-1, H-5, OCH2), 4.27
(dd, J � 10.3, 5.1 Hz, 1H, H-5), 4.59 (bd, J � 10.3 Hz, 1H, H-8), 6.88 (d, J � 8.5
Hz, 2H, Harom), 7.35 (m, 1H, Harom), 7.44 (m, 4H, Harom), 7.58 (d, J � 8.1 Hz, 4H,
Harom), 7.75 (d, J � 8.5 Hz, 2H, Harom); 13C (75 MHz, CDCl3) � 13.9, 19.3, 31.1,
31,3, 33.0, 64.8, 67.5, 71.5, 76.1, 79.8, 112.0, 113.8, 126.4, 127.1, 127.2, 127.3,
128.8, 135.8, 140.9, 141.5, 161.5.

Anal. Calcd for C28H31O4B (442.37): C, 76.02; H, 7.06%. Found: C, 75.39;
H, 7.29%.

(1S,6R,8R)-8-Biphenyl-3-(4�-hexyloxyphenyl)-2,4,7-trioxa-3-borabicy-
clo[4.4.0]decane (8c). Yield 70%; mp 156.5 °C; [�]D

20 
26.2 (c 0.3, CHCl3);
1H NMR (300 MHz, CDCl3) � 0.91 (t, J � 6.8 Hz, 3H, CH3), 1.29–1.40 (m, 4H,
CH2), 1.46 (m, 2H, CH2), 1.73–1.97 (m, 4H, H-9, CH2), 2.13 (m, 1H, H-10), 2.42
(m, 1H, H-10), 3.66 (ddd, J � 10.3, 9.9, 5.1 Hz, 1H, H-6), 3.88–4.04 (m, 4H, H-1,
H-5, OCH2), 4.28 (dd, J � 10.3, 5.1 Hz, 1H, H-5), 4.60 (dd, J � 11.0, 1.8 Hz, 1H,
H-8), 6.88 (d, J � 8.8 Hz, 2H, Harom), 7.35 (m, 1H, Harom), 7.44 (m, 4H, Harom),
7.58 (d, J � 8.4 Hz, 4H, Harom), 7.75 (d, J � 8.8 Hz, 2H, Harom); 13C (75 MHz,
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CDCl3) � 14.1, 22.7, 25.8, 29.3, 31.2, 31.7, 33.0, 64.9, 67.8, 71.6, 76.1, 79.9, 113.8,
126.5, 127.2, 127.4, 128.8, 135.8, 140.5, 140.9, 141.0, 161.6.

Anal. Calcd for C30H35O4B (470.42): C, 76.55; H, 7.50%. Found: C, 76.24;
H, 7.48%.

(1S,6R,8R)-8-Biphenyl-3-(4�-octyloxyphenyl)-2,4,7-trioxa-3-borabicy-
clo[4.4.0]decane (8d). Yield 80%; mp 141.5 °C; [�]D

20 
22.4 (c 0.3, CHCl3);
1H NMR (300 MHz, CDCl3) � 0.89 (t, J � 7.0 Hz, 3H, CH3), 1.25–1.40 (m, 8H,
CH2), 1.46 (m, 2H, CH2), 1.74–1.96 (m, 4H, H-9, CH2), 2.13 (m, 1H, H-10), 2.42
(m, 1H, H-10), 3.66 (ddd, J � 10.3, 9.6, 5.1 Hz, 1H, H-6), 3.88–4.04 (m, 4H, H-1,
H-5, OCH2), 4.28 (dd, J � 10.3, 5.1 Hz, 1H, H-5), 4.58 (bd, J � 11.0 Hz, 1H, H-
8), 6.87 (d, J � 8.5 Hz, 2H, Harom), 7.34 (m, 1H, Harom), 7.44 (m, 4H, Harom), 7.58
(d, J � 8.1 Hz, 4H, Harom), 7.74 (d, J � 8.5 Hz, 4H, Harom); 13C (75 MHz, CDCl3)
� 14.1, 22.7, 26.1, 29.2, 29.3, 29.4, 31.1, 31.8, 33.0, 64.8, 67.8, 71.5, 76.0, 79.8,
113.8, 126.4, 127.1, 127.2, 127.3, 128.8, 135.8, 140.5, 140.8, 140;9, 161.5.

Anal. Calcd for C32H39O4B (498.48): C, 77.06; H, 7.89%. Found: C, 77.16;
H, 7.85%.
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